REMOVAL Of Cu(II), Ni(II), and Cr(III) IONS FROM WASTEWATER USING COMPLEXATION- ULTRAFILTRATION TECHNIQUE
نویسنده
چکیده
In the recent years, the complexationultrafiltration technique has been shown to be a promising technique for removal of heavy metals in solution. In this study, a polymerenhanced ultrafiltration process has been investigated for removal of toxic heavy metals such as Cu(II), Ni(II), and Cr(III) from synthetic wastewater solutions. Carboxy methyl cellulose as a water-soluble polymer was used for complexing the cationic forms of the heavy metals before filtration. The functions of the metal-CMC complexation are to increase their molecular weight and their size. The size of the complex has to be larger than the pores of the selected membrane so the complex can be retained. Permeate water is then purified from the heavy metals. Filtration experiments were performed with ultrafiltration membrane system, equipped with a polyethersulfon membrane with a 10000 Daltons cut-off. The pressure was fixed at 1 bar with a permeate flow rate of 7.5 l/h. Different parameters, affecting the percentage rejection of the metals, such as pH and metal/CMC ratio have been investigated. Results obtained revealed that the maximum percentage of the metals rejection was achieved at pH ≥ 7 with increasing of the CMC concentration. Advantages of that technology over the other conventional technologies are the low energy requirements involved in ultrafiltration, the very fast reaction kinetics, and the high selectivity of separation.
منابع مشابه
Adsorption of Copper(II) from an Wastewater Effluent of Electroplating Industry by Poly(ethyleneimine)-Functionalized Silica
The poly(ethyleneimine)-functionalized silica has been developed successfully as an effective adsorbent for the adsorption removal of Cu(II) ions from electroplating wastewater. The influences of pH, contact time and initial concentration of Cu(II) ions on the adsorption capacity and the effect of adsorbent dosage on the removal efficiency of Cu(II) ions from electroplatin...
متن کاملHeavy metals removal from wastewater by using different kinds of magnetite nanoadsorbents: effects of different organic and inorganic coatings on the removal of copper and lead ions
Co-precipitation procedure was applied in order to obtain different kinds of magnetic nanoadsobents for the removal of Pb(II) and Cu(II) toxic metal ions from wastewater samples. Prepared nanoadsorbents were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The average sizes of t...
متن کاملRemoval of Manganese from an Aqueous Solution Using Micellar-Enhanced Ultrafiltration (MEUF) with SDS Surfactants
In the present study, micellar-enhanced ultrafiltration (MEUF) was used to remove manganese (Mn) (II) from synthetic wastewater. The effects of different operational conditions on the filtration performance of MEUF or the membrane were studied. It was found that the transmembrane pressure has a major influence on the permeate flux and an insignificant effect on the rejection coefficient. The pe...
متن کاملRemoval of Ni (II) ions from Aqueous Solutions Using Origanum majorana-Capped Silver NanoParticles Synthesis Eequilibrium
The applicability of Origanum majorana-Capped Silver nanoparticles synthesis for removing Ni (II) ions from aqueous solutions has been reported. This novel material was characterized by different techniques such as FT-IR, XRD and SEM. The influence of nanoparticle dosage, pH of the sample solution, individual ions concentration, temperature, contact time between the sample and the adsorbent wer...
متن کاملAdsorptive Removal of Cr(VI) and Cu(II) Ions from Water Solution using Graphene Oxide-Manganese Ferrite (GMF) Nanomaterials
Chromium (Cr) and copper (Cu) are heavy metals known for their dangerous effect towards human health and could enter into human body mainly through ingestion. Over the years, different treatment methods have been used to eliminate heavy metal from raw water source and these include (co)precipitation, coagulation/flocculation, adsorption and ion- exchange. Nonetheless, adsorption is the most pro...
متن کامل